

1

Medhavi Malik1, Dr. Kavita2

1Research scholar, Department of Computer Science Jayoti Vidyapeeth women’s University,

Jaipur

2Guide, Department of Computer Science Jayoti Vidyapeeth women’s University, Jaipur

CORE PYTHON: BASICS

 Python is a programming language.

 Python can be used on a server to create webapplications.

WHY IS IT CALLED PYTHON?

At the same time he began implementing Python, Guido van Rossum was also reading the

published scripts from Monty Python‘s Flying Circus (a BBC comedy series from the

seventies, in the unlikely case you didn‘t know). It occurred to him that he needed a name

that was short, unique, and slightly mysterious, so he decided to call the languagePython.

The most important thing in the programming language is the name. A language will not

succeed without a good name. I have recently invented a very good name and now I am

looking for a suitable language. — Donald Knuth

INTRODUCTION TO PYTHON

 Python is a popular programminglanguage

 Created by Guido van Rossum and first released in1991

 Focus on readability andproductivity

 Python is a general-purposeinterpreted

 Interactive

 High-level programminglanguage

 Strongly typed and dynamicallytyped

 Automatic MemoryManagement

 Supports multiple programming paradigms, including object-oriented,imperative,

functional andprocedural

2

FEATURES

 BatteriesIncluded

 Everything is anobject

 InteractiveShell

 StrongIntrospection

 CrossPlatform

 DynamicTyping

 Easy-to-learn

 Easy-to-read

 Easy-to-maintain

 A broad standardlibrary

 InteractiveMode

 Portable

 Extendable

 Databases

 GUIProgramming

 Scalable

USES

 Web Development(Server-Side)

 Mathematics

 Embedded ScriptingLanguage

 3DSoftware

 GUI Based DesktopApplications

 Image Processing and Graphic DesignApplications

 Scientific and ComputationalApplications

 Games

 Enterprises and BusinessApplications

 OperatingSystems

 LanguageDevelopment

 Prototyping

 NetworkProgramming

3

BitTorrent, YouTube, DropBox, Deluge, Cinema 4D, and Bazaar are a few globally-used

applications based on Python

RELEASES

 Created in 1989 by Guido VanRossum

 Python 1.0 released in1994

 Python 2.0 released in2000

 Python 3.0 released in2008

 Python 2.7 is the recommended version in2010

 Python 3.5 released in2015

PYTHON SYNTAX COMPARED TO OTHER

PROGRAMMINGLANGUAGES

 Python was designed to for readability, and has some similarities to the English

language with influence frommathematics.

 Python uses new lines to complete a command, as opposed to other programming

languages which often use semicolons orparentheses.

 Python relies on indentation, using whitespace, to define scope; such as the scope of

loops, functions and classes. Other programming languages often use curly-brackets

for thispurpose.

 Python works on different platforms (Windows, Mac, Linux, Raspberry Pi,etc).

 Python has syntax that allows developers to write programs with fewer lines than

some other programminglanguages.

 Python runs on an interpreter system, meaning that code can be executed as soon as it

is written. This means that prototyping can be veryquick.

 Python can be treated in a procedural way, an object-orientated way or a functional

way.

LIMITATIONS OF PYTHON

 Parallel Processing can be done in Python but not as elegantly as done in some other

languages (like Java Script and Go Lang)

4

 Being on interpreted language, Python is slow as compared to C/C++. So, Python is

not a good choice for those developing a high-graphic 3d games that takes a lot of

CPU

 As of now, there are few users of Python as compared to C/C++ orJAVA

 Lacks of true MultiprocessorSupport

 Has very limited commercial supportpoint

 Python is slower than C/C++ when it comes to computation of heavy tasks and

desktopapplications

 It is difficult to pack up a big Python application into a single executable file. This

makes it difficult to distribute Python to non-technicalusers.

PYTHON INTERPRETER

Python is available on a wide variety of platforms including Windows, Linux and Mac OS

X.

Getting Python

The most up-to-date and current source code, binaries, documentation, news, etc., is

available on the official website of Python https://www.python.org/

Installing Python

Python distribution is available for a wide variety of platforms. You need to download only

the binary code applicable for your platform and install Python.

o Unix and LinuxInstallation

Here are the simple steps to install Python on Unix/Linux machine.

 Open a Web browser and go to https://www.python.org/downloads/.

 Follow the link to download zipped source code available forUnix/Linux.

 Download and extractfiles.

 Editing the Modules/Setup file if you want to customize someoptions.

 run ./configurescript

 make

 makeinstall

5

This installs Python at standard location /usr/local/bin and its libraries at

/usr/local/lib/pythonXX where XX is the version of Python.

o WindowsInstallation

Here are the steps to install Python on Windows machine.

 Open a Web browser and go to https://www.python.org/downloads/.

 Follow the link for the Windows installer python-XYZ.msi file where XYZ is the

version you need toinstall.

 To use this installer python-XYZ.msi, the Windows system must support Microsoft

Installer 2.0. Save the installer file to your local machine and then run it to find out if

your machine supports MSI.

 Run the downloaded file. This brings up the Python install wizard, which is really

easy to use. Just accept the default settings, wait until the install is finished, and you

aredone.

o MacintoshInstallation

Recent Macs come with Python installed, but it may be several years out of date. See

http://www.python.org/download/mac

Setting up PATH

The path is stored in an environment variable, which is a named string maintained by the

operating system. This variable contains information available to the command shell and

other programs.

The path variable is named as PATH in Unix or Path in Windows (Unix is case sensitive;

Windows is not).

o Setting path atUnix/Linux

To add the Python directory to the path for a particular session in Unix −

 In the csh shell − type setenv PATH "$PATH:/usr/local/bin/python" and pressEnter.

 In the bash shell (Linux) − type export PATH="$PATH:/usr/local/bin/python" and

pressEnter.

 In the sh or ksh shell − type PATH="$PATH:/usr/local/bin/python" and pressEnter.

 Note − /usr/local/bin/python is the path of the Pythondirectory

6

o Setting path atWindows

To add the Python directory to the path for a particular session in Windows −

At the command prompt − type path %path%;C:\Python and press Enter.

Note − C:\Python is the path of the Python directory

o SettingpathatMacOS

In Mac OS, the installer handles the path details. To invoke the Python interpreter from any

particular directory, you must add the Python directory to your path.

Python Environment Variables

Variable Description

PYTHONPATH It has a role similar to PATH. This variable tells the Python

interpreter where to locate the module files imported into a program.

It should include the Python source library directory and the

directories containing Python source code. PYTHONPATH is

sometimes preset by the Python installer.

PYTHONSTARTUP It contains the path of an initialization file containing Python source

code. It is executed every time you start the interpreter. It is named

as .pythonrc.py in Unix and it contains commands that load utilities

or modify PYTHONPATH.

PYTHONCASEOK It is used in Windows to instruct Python to find the first case-

insensitive match in an import statement. Set this variable to any

value to activate it.

PYTHONHOME It is an alternative module search path. It is usually embedded in the

PYTHONSTARTUP or PYTHONPATH directories to make

switching module libraries easy.

Running Python

There are three different ways to start Python –

7

 InteractiveInterpreter

You can start Python from Unix, DOS, or any other system that provides you a command-

line interpreter or shell window.

Enter python the command line.

Start coding right away in the interactive interpreter.

$python # Unix/Linux

or

python% # Unix/Linux

or

C:> python # Windows/DOS

List of all the available command line options

Option Description

-d It provides debug output.

-o It generates optimized bytecode (resulting in .pyo files).

-s Do not run import site to look for Python paths on startup.

-v verbose output (detailed trace on import statements).

-x disable class-based built-in exceptions (just use strings); obsolete starting

with version 1.6.

-c cmd run Python script sent in as cmd string

file run Python script from given file

 Script from theCommand-line

A Python script can be executed at command line by invoking the interpreter on your

application, as in the following –

$python script.py # Unix/Linux

or

python% script.py # Unix/Linux

or

C: >python script.py # Windows/DOS

Note − Be sure the file permission mode allows execution.

 Integrated DevelopmentEnvironment

You can run Python from a Graphical User Interface (GUI) environment as well, if you have

8

a GUI application on your system that supports Python.

o Unix − IDLE is the very first Unix IDE forPython.

o Windows − PythonWin is the first Windows interface for Python and is an IDE

with aGUI.

o Macintosh − The Macintosh version of Python along with the IDLE IDE is

available from the main website, downloadable as either MacBinary or BinHex'd

files.

If you are not able to set up the environment properly, then you can take help from your

system admin. Make sure the Python environment is properly set up and working perfectly

fine.

PYTHON AS A CALCULATOR

The interpreter acts as a simple calculator: you can type an expression at it and it will write

the value.

For example:

>>> 2 + 2

4

>>> 50 - 5*6

20

>>> (50 - 5*6) / 4

5.0

>>> 8 / 5 # division always returns a floating point number

1.6

Division (/) always returns a float. To do floor division and get an integer result (discarding

any fractional result) you can use the // operator; to calculate the remainder you can use %

>>> 17 / 3 # classic division returns a float

5.666666666666667

>>> 17 // 3 # floor division discards the fractional part

5

9

>>> 17 % 3 # the % operator returns the remainder of the division

2

>>> 5 * 3 + 2 # result * divisor + remainder

17

With Python, it is possible to use the ** operator to calculate powers:

>>> 5 ** 2 # 5 squared

25

>>> 2 ** 7 # 2 to the power of 7

128

The equal sign (=) is used to assign a value to a variable. Afterwards, no result is displayed

before the next interactive prompt:

>>> width = 20

>>> height = 5 * 9

>>> width * height

900

In interactive mode, the last printed expression is assigned to the variable _. This means that

when you are using Python as a desk calculator, it is somewhat easier to continue

calculations.

For example:

>>>tax = 12.5 / 100

>>>price = 100.50

>>>price * tax

12.5625

>>>price + _

113.0625

>>>round(_, 2)

113.06

PYTHON SYNTAX

10

Python syntax can be executed by writing directly in the Command Line.

 PythonIndentations

Where in other programming languages the indentation in code is for readability only, in

Python the indentation is very important.

Python provides no braces to indicate blocks of code for class and function definitions or

flowcontrol.

Whitespace at the beginning of the line is called indentation.

All statements inside a block should be at the same indentation level.

Example:

if 5 > 2:

print("Five is greater than two!")

Output:

Python will give you an error if you skip the indentation.

Example

if 5 > 2:

print("Five is greater than two!")

Note: ^ is a standard symbol that indicates where error has occurred in the program.

 Comments inPython

Python has commenting capability for the purpose of in-code documentation.

Comments in Python start with the hash character, #, and extend to the end of the physical

line.

11

Example:

#This is a comment.

print("Hello, World!")

Inline Comments: You can type a comment on the same line after a statement or expression–

name = "Madisetti" # This is again comment

Multiple Line Comments: You can comment multiple lines as follows –

This is a comment.

This is a comment, too.

This is a comment, too.

I said that already.

MultiLine Comments: Comments spanning multiple lines have ― ― ― or ‗ ‗ ‗ on either end.

This is same as multiline string, but they can be used as comments:

Examples:

" " "

This type of comment spans multiple lines.

These are mostly used for documentation of functions, classes and modules.

" " "

Examples:

this is the first comment

spam = 1 # and this is the second comment

... and now a third!

text = "# This is not a comment because it's inside quotes."

 Multi-LineStatements

Statements in Python typically end with a new line. Python does, however, allow the use of

the line continuation character (\) to denote that the line should continue.

For example –

total = item_one + \

12

item_two + \

item_three

Statements contained within the [], {}, or () brackets do not need to use the line continuation

character.

For example –

days = ['Monday', 'Tuesday', 'Wednesday',

'Thursday', 'Friday']

 Docstrings (Quotation inPython)

Python also has extended documentation capability, called docstrings.

Docstrings can be one line, or multiline.

Python uses triple quotes at the beginning and end of the docstring.

Example

"""This is a

multilinedocstring."""

print("Hello,World!")

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals, as

long as the same type of quote starts and ends the string.

The triple quotes are used to span the string across multiple lines. For example, all the

following are legal −

word = 'word'

sentence = "This is a sentence."

paragraph = """This is a paragraph. It is

made up of multiple lines and sentences."""

13

 MultipleStatementGroupsasSuites

A group of individual statements, which make a single code block are called suites in

Python.

Compound or complex statements, such as if, while, def, and class require a header line and

asuite.

Header lines begin the statement (with the keyword) and terminate with a colon (:) and are

followed by one or more lines which make up the suite.

Example:

if expression :

suite

elif expression :

suite

else :

suite

 PythonIdentifiers

A Python identifier is a name used to identify a variable, function, class, module or other

object.

An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or

more letters, underscores and digits (0 to9).

Python does not allow punctuation characters such as @, $, and % within identifiers. Python

is a case sensitive programming language.

Here are naming conventions for Python identifiers −

 Class names start with an uppercase letter. All other identifiers start with a lowercase

letter.

 Starting an identifier with a single leading underscore indicates that the identifier is

private.

 Starting an identifier with two leading underscores indicates a strongly private

identifier.

 If the identifier also ends with two trailing underscores, the identifier is a language-

defined specialname.

14

Examples of valid identifier are:

Sum, _my_var, num1, r, var_20, First

Examples of invalid identifier are:

1num, my-var, %check, Basic Sal, H#R&A

 ReservedWords

Python keywords are reserved words and you cannot use them as constant or variable or any

other identifier names.

All the Python keywords contain lowercase letters only.

and exec not

assert finally or

break for pass

class from print

continue global raise

def if return

del import try

elif in while

else is with

except lambda yield

SEMANTICS

 Assigning or Initializing values tovariables

In Python, programmers need not explicitly declare variables to reserve memory space.

The declaration is done automatically when a value is assigned to the variable using the equal

sign(=).

The operand on the left side of equal sign is the name of the variable and the operand on its

right side is the value to be stored in that variable.

Example: Program to display data of different types using variables and literal constants.

num = 7

amt = 123.45

code = 'A'

15

pi = 3.1415926536

population_of_india = 1000000000

msg = "hi"

print(" NUM= "+str(num))

print("\n AMT= "+str(amt))

print("\n CODE= "+str(code))

print("\n POPULATION OF INDIA = "+str(population_of_india))

print("\n MESSAGE= "+str(msg))

Output:

In Python, you can reassign variables as many times as you want to change the value stored

in them. You may even store value of one data type in a statement and then a value of another

data in a subsequentstatement.

Example: Program to reassign values to a variable

val = 'Hello'

print(val)

val = 100

print(val)

val = 12.34

print(val)

Output:

Hello

100

12.34

16

Python remember variables and their values.

Example:

>>> x = 5

>>> y =10

>>> print(‗Hello‘)

Hello

>>> print(x+y)

15

 MultipleAssignment

Python allows programmers to assign a single value to more than one variables

simultaneously.

For example:

sum = flag = a = b = 0

All four integer variables are assigned a value 0.

You can assign different values to multiple variables simultaneously.

Sum, a, b, mesg=0, 3, 5,―RESULT‖

Variable sum, a, and b are integers (numbers) and mesg is a string. sum is assigned a value 0,

a is assigned a 3, b is assigned 5 and mesg is assigned ―RESULT‖

Note: Removing a variable means that the reference from the name to the value has been

deleted. However, deleted variables can be again in the code if and only if you reassign them

some value.

For Example:

>>> str=―Hello‖

>>> num = 10

>>> age = 20

>>> print(str)

Hello

>>> print(num)

17

10

>>>print(age)

20

>>> del num

>>> print(num)

Traceback(mostrecent call lat): File―<pyshell+13‖, line1, in

<module>

print(num)

NameError: name ‗num ‗ is not defined.

 Multiplestatementsonasingleline

The semicolon (;) allows multiple statements on the single line given that neither statement

starts a new code block.

Example:

x = "hello"; print (x)

Output: hello

PYTHON DATA TYPES

Every value in Python has a datatype. Since everything is an object in Python programming,

data types are actually classes and variables are instance (object) of these classes.

The data type determines:

o The possible values for thattype.

o The operations that can be done with thatvalues.

o Conveys the meaning ofdata.

o The way values of that type can bestored.

 PythonNumbers

Integers, floating point numbers and complex numbers falls under Python numbers category.

Python supports four different numerical types −

o int (signedintegers)

o long (long integers, they can also be represented in octal andhexadecimal)

o float (floating point realvalues)

o complex (complexnumbers)

18

Example:

int Long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

Note: The ‗E‘ notation indicates powers 10. In this case, 91.5E-2 means 91.5 * 10-2.

 Python allows you to use a lowercase l with long, but it is recommended that you use

only an uppercase L to avoid confusion with the number 1. Python displays long

integers with an uppercase L.

 A complex number consists of an ordered pair of real floating-point numbers denoted by

x + yj, where x and y are the real numbers and j is the imaginaryunit.

 We can use the type() function to know which class a variable or a value belongs to and

the isinstance() function to check if an object belongs to a particularclass.

Example:

a = 5

print(a, "is of type", type(a))

a = 2.0

print(a, "is of type", type(a))

a = 1+2j

print(a, "is complex number?", isinstance(1+2j,complex))

Output:

5 is of type <class 'int'>

2.0 is of type <class 'float'>

(1+2j) is complex number? True

19

o Int

Int, or integer, is a whole number, positive or negative, without decimals, of unlimited length.

Integers can be of any length, it is only limited by the memory available.

Example:

x = 1

y = 35656222554887711

z =-3255522

print(type(x))

print(type(y))

print(type(z))

Output:

<class'int'>

<class'int'>

<class'int'>

o Float

Float, or "floating point number" is a number, positive or negative, containing one or more

decimals.

A floating point number is accurate up to 15 decimal places. Integer and floating points are

separated by decimal points. 1 is integer,1.0 is floating point number.

Example:

x = 1.10

y = 1.0

z = -35.59

print(type(x))

print(type(y))

print(type(z))

20

Output:

<class'float'>

<class'float'>

<class'float'>

o Complex

Complex numbers are written in the form, x+yj, where x is the real part and y is the

imaginarypart.

Complex numbers are written with a "j" as the imaginary part:

Example:

x = 3+5j

y = 5j

z = -5j

print(type(x))

print(type(y))

print(type(z))

Output:

<class'complex'>

<class'complex'>

<class 'complex'>

Example:

>>> a = 1234567890123456789

>>> a

1234567890123456789

>>> b = 0.1234567890123456789

>>> b

0.12345678901234568

>>> c = 1+2j

>>> c

21

(1+2j)

Notice that the float variable b got truncated.

Although floating point numbers are very efficient at handling large numbers, there are

some issues while dealing with then as they may produce following errors:

 The Arithmetic Overflow Problem: When you multiply two very large floating

point numbers you may get an arithmetic overflow. Arithmetic Overflow is a

condition that occurs when a calculated result is too large in magnitude (size) to be

represented.

For example:

2.7e200 * 4.3e200

Output: inf

 The Arithmetic Underflow Problem: You can get an arithmetic underflow while

doing division of two floating point numbers. Arithmetic underflow is a condition that

occurs when a calculated result is too small in magnitude to berepresented.

For example:

3.0e-400/5.0e200

Output: 0.0

 LossofPrecisionProblem:Whenyoudivide1/3youknowthattheresultis

.33333333…, where 3 is repeated infinitely.

Python Casting: Specify a Variable Type

Casting in python is therefore done using constructor functions:

 int() - constructs an integer number from an integer literal, a float literal (by rounding

down to the previous whole number), or a string literal (providing the string

represents a wholenumber)

 float() - constructs a float number from an integer literal, a float literal or a string

literal (providing the string represents a float or aninteger)

 str() - constructs a string from a wide variety of data types, including strings, integer

literals and floatliterals

22

Example: Integers

x = int(1)

y = int(2.8)

z = int("3")

print(x)

print(y)

print(z)

Output:

1

2

3

Example: Floats

x = float(1)

y = float(2.8)

z =float("3")

w = float("4.2")

print(x)

print(y)

print(z)

print(w)

Output:

1.0

2.8

3.0

4.2

Example: Strings

x = str("s1")

y = str(2)

z = str(3.0)

print(x)

print(y)

23

print(z)

Output:

s1

2

3.0

Built-in format() Function

Any floating-point value may contain an arbitrary number of decimal places, so it I always

recommended to use the built-in format () function to produce a string version of a number

with a specific number of decimal places. Observe the differences:

Without using format () Using format ()

>>> float(16/(float(3))) >>>

5.333333333333333 format(float(16/(float(3))),‘.2f‘)

 ‗5.33‘

.2f in the format () function rounds the result to two decimal places of accuracy.

The format () function can also be used to format floating point numbers in scientific

notation.

>>> format(3**50, ‗.5e‘)

‗7.17898e+23‘

The result is formatted in scientific notation with five decimal places of precision.

The format () function can also be used to insert a comma in the number:

>>> format (123456, ‗,‘)

‗123,456‘

Note: The format () function produces a numeric string of a floating point value rounded to a

specific number of decimal places.

 PythonStrings

o Strings in Python are identified as a contiguous set of characters represented in the

24

quotation marks.

o Python allows for either pairs of single or doublequotes.

o Subsets of strings can be taken using the slice operator ([] and [:]) with indexes

starting at 0 in the beginning of the string and working their way from -1 at theend.

o The plus (+) sign is the string concatenation operator and the asterisk (*) is the

repetitionoperator.

For example –

str = 'Hello World!'

printstr # Prints completestring

printstr[0] # Prints first character of thestring

printstr[2:5] # Prints characters starting from 3rd to 5th

printstr[2:] # Prints string starting from 3rd character

print str* 2 # Prints string twotimes

print str + "TEST" # Prints concatenated string

Output:

Hello World!

H

llo

llo World!

Hello World!Hello World!

Hello World!TEST

o The strip() method removes any whitespace from the beginning or the end:

Example:

a = " Hello, World! "

print(a.strip())

Output:

Hello, World!

25

o The len() method returns the length of astring:

Example:

a = "Hello, World!"

print(len(a))

Output:

13

o The lower() method returns the string in lower case:

Example:

a = "Hello, World!"

print(a.lower())

Output:

hello, world!

o The upper() method returns the string in upper case:

Example:

a = "Hello, World!"

print(a.upper())

Output:

HELLO, WORLD!

o The replace() method replaces a string with another string:

Example:

a = "Hello, World!"

print(a.replace("H", "J"))

Output:

Jello, World!

o The split() method splits the string into substrings if it finds instances of the separator:

Example:

a = "Hello, World!"

b = a.split(",")

print(b)

26

Output:

['Hello', 'World!']

Besides numbers, Python can also manipulate strings, which can be expressed in several

ways.Theycanbeenclosedinsinglequotes(‗…‘)ordoublequotes(―…―)withthesame result. \ can

be used to escapequotes

Example:

>>> 'spam eggs' # single quotes

'spam eggs'

>>> 'doesn\'t' # use \' to escape the single quote...

"doesn't"

>>> "doesn't" # ...or use double quotes instead

"doesn't"

>>> '"Yes," they said.'

'"Yes," theysaid.'

>>> "\"Yes,\" they said."

'"Yes," theysaid.'

>>> '"Isn\'t," they said.'

'"Isn\'t," they said.'

The print() function produces a more readable output, by omitting the enclosing quotes and

by printing escaped and specialcharacters.

>>> '"Isn\'t," they said.'

'"Isn\'t," they said.'

>>> print('"Isn\'t," they said.')

27

"Isn't," they said.

>>> s = 'First line.\nSecond line.' # \n means newline

>>> s # without print(), \n is included in the output

'First line.\nSecond line.'

>>> print(s) # with print(), \n produces a new line

First line.

Second line.

If you don‘t want characters prefaced by \ to be interpreted as special characters, you can

use raw strings by adding an r before the firstquote:

>>> print('C:\some\name') # here \n means newline!

C:\some

ame

>>> print(r'C:\some\name') # note the r before the quote

C:\some\name

Strings can be concatenated (glued together) with the + operator, and repeated with *:

Example:

>>> # 3 times 'un', followed by 'ium'

>>> 3 * 'un' + 'ium'

'unununium'

Two or more string literals (i.e. the ones enclosed between quotes) next to each other are

automatically concatenated.

Example:

>>> 'Py' 'thon'

'Python'

Strings can be indexed (subscripted), with the first character having index 0. There is no

separate character type; a character is simply a string of size one.

28

Example:

>>> word = 'Python'

>>> word[0] # character in position 0

'P'

>>> word[5] # character in position 5

'n'

Indices may also be negative numbers, to start counting from the right.

Example:

>>> word[-1] # last character

'n'

>>> word[-2] # second-last character

'o'

>>> word[-6]

'P'

Note that since -0 is the same as 0, negative indices start from -1.

Note how the start is always included, and the end always excluded. This makes sure that s[:i]

+s[i:] is always equal to s.

Example:

>>> word[:2] + word[2:]

'Python'

>>> word[:4] + word[4:]

'Python'

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second

index defaults to the size of the string being sliced.

Example:

>>> word[:2] # character from the beginning to position 2 (excluded)

'Py'

>>> word[4:] # characters from position 4 (included) to the end

29

'on'

>>> word[-2:] # characters from the second-last (included) to the end

'on'

Escape Characters

Following table is a list of escape or non-printable characters that can be represented with

backslash notation.

An escape character gets interpreted; in a single quoted as well as double quoted strings.

Backslash notation Hexadecimal character Description

\a 0x07 Bell or alert

\b 0x08 Backspace

\cx Control-x

\C-x Control-x

\e 0x1b Escape

\f 0x0c Formfeed

\M-\C-x Meta-Control-x

\n 0x0a Newline

\nnn Octal notation, where n is in

the range 0.7

\r 0x0d Carriage return

\s 0x20 Space

\t 0x09 Tab

\v 0x0b Vertical tab

\x Character x

\xnn Hexadecimal notation,

where n is in the range 0.9,

a.f, or A.F

30

String Special Operators

Assume string variable a holds 'Hello' and variable b holds 'Python', then −

Operator Description Example

+ Concatenation - Adds values on either side of the operator a + b will give

HelloPython

* Repetition - Creates new strings, concatenating multiple

copies of the same string

a*2 will give -

HelloHello

[] Slice - Gives the character from the given index a[1] will give e

[:] Range Slice - Gives the characters from the given range a[1:4] will give

ell

in Membership - Returns true if a character exists in the

given string

H in a will give 1

not in Membership - Returns true if a character does not exist in

the given string

M not in a will

give 1

r/R Raw String - Suppresses actual meaning of Escape
characters. The syntax for raw strings is exactly the same
as for normal strings with the exception of the raw string
operator, the letter "r," which precedes the quotation
marks. The "r" can be lowercase (r) or uppercase (R) and
must be placed immediately preceding the first quote
mark.

print r'\n' prints
\n and print
R'\n'prints\n

String Formatting Operator

Here is the list of complete set of symbols which can be used along with % −

Format Symbol Conversion

%c character

%s string conversion via str() prior to formatting

%i signed decimal integer

%d signed decimal integer

%u unsigned decimal integer

%o octal integer

%x hexadecimal integer (lowercase letters)

%X hexadecimal integer (UPPERcase letters)

%e exponential notation (with lowercase 'e')

31

%E exponential notation (with UPPERcase 'E')

%f floating point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

Other supported symbols and functionality are listed in the following table −

Symbol Functionality

* argument specifies width or precision

- left justification

+ display the sign

<sp> leave a blank space before a positive number

add the octal leading zero ('0') or hexadecimal

leading '0x' or '0X', depending on whether 'x'

or 'X' wereused.

0 pad from left with zeros (instead of spaces)

% '%%' leaves you with a single literal '%'

(var) mapping variable (dictionary arguments)

m.n. m is the minimum total width and n is the

number of digits to display after thedecimal

point (if appl.)

Built-in String Methods

Sr.No. Methods with Description

1 capitalize()

Capitalizes first letter of string

2 center(width, fillchar)

Returns a space-padded string with the original string centered to a total of width

columns.

3 count(str, beg= 0,end=len(string))

Counts how many times str occurs in string or in a substring of string if starting

index beg and ending index end are given.

4 decode(encoding='UTF-8',errors='strict')

Decodes the string using the codec registered for encoding. encoding defaults to

the default stringencoding.

32

5 encode(encoding='UTF-8',errors='strict')

Returns encoded string version of string; on error, default is to raise a ValueError

unless errors is given with 'ignore' or 'replace'.

6 endswith(suffix, beg=0, end=len(string))

Determines if string or a substring of string (if starting index beg and ending index

end are given) ends with suffix; returns true if so and false otherwise.

7 expandtabs(tabsize=8)

Expands tabs in string to multiple spaces; defaults to 8 spaces per tab if tabsize not

provided.

8 find(str, beg=0 end=len(string))

Determine if str occurs in string or in a substring of string if starting index beg and

ending index end are given returns index if found and -1 otherwise.

9 index(str, beg=0, end=len(string))

Same as find(), but raises an exception if str not found.

10 isalnum()

Returns true if string has at least 1 character and all characters are alphanumeric

and false otherwise.

11 isalpha()

Returns true if string has at least 1 character and all characters are alphabetic and

false otherwise.

12 isdigit()

Returns true if string contains only digits and false otherwise.

13 islower()

Returns true if string has at least 1 cased character and all cased characters are in

lowercase and false otherwise.

14 isnumeric()

Returns true if a unicode string contains only numeric characters and false

otherwise.

15 isspace()

Returns true if string contains only whitespace characters and false otherwise.

16 istitle()

Returns true if string is properly "titlecased" and false otherwise.

33

17 isupper()

Returns true if string has at least one cased character and all cased characters are in

uppercase and false otherwise.

18 join(seq)

Merges (concatenates) the string representations of elements in sequence seq into a

string, with separator string.

19 len(string)

Returns the length of the string

20 ljust(width[, fillchar])

Returns a space-padded string with the original string left-justified to a total of

width columns.

21 lower()

Converts all uppercase letters in string to lowercase.

22 lstrip()

Removes all leading whitespace in string.

23 maketrans()

Returns a translation table to be used in translate function.

24 max(str)

Returns the max alphabetical character from the string str.

25 min(str)

Returns the min alphabetical character from the string str.

26 replace(old, new [, max])

Replaces all occurrences of old in string with new or at most max occurrences if

 max given.

27 rfind(str, beg=0,end=len(string))

Same as find(), but search backwards in string.

28 rindex(str, beg=0, end=len(string))

Same as index(), but search backwards in string.

29 rjust(width,[, fillchar])

Returns a space-padded string with the original string right-justified to a total of

width columns.

34

30 rstrip()

Removes all trailing whitespace of string.

31 split(str="", num=string.count(str))

Splits string according to delimiter str (space if not provided) and returns list of

substrings; split into at most num substrings if given.

32 splitlines(num=string.count('\n'))

Splits string at all (or num) NEWLINEs and returns a list of each line with

NEWLINEs removed.

33 startswith(str, beg=0,end=len(string))

Determines if string or a substring of string (if starting index beg and ending index

end are given) starts with substring str; returns true if so and false otherwise.

34 strip([chars])

Performs both lstrip() and rstrip() on string.

35 swapcase()

Inverts case for all letters in string.

36 title()

Returns "titlecased" version of string, that is, all words begin with uppercase and

the rest are lowercase.

37 translate(table, deletechars="")

Translates string according to translation table str(256 chars), removing those in

the delstring.

38 upper()

Converts lowercase letters in string to uppercase.

39 zfill (width)

Returns original string leftpadded with zeros to a total of width characters;

intended for numbers, zfill() retains any sign given (less onezero).

40 isdecimal()

Returns true if a unicode string contains only decimal characters and false

otherwise.

35

Command-line String Input

Example:

print("Enter your name:")

x = input()

print("Hello, " + x)

 PythonList

List is a collection which is ordered and changeable. Allows duplicate members.

All the items in a list do not need to be of the same type.

A list consist of items separated by commas are enclosed within brackets [].

Example:

>>> a = [1, 2.2, 'python']

Lists are mutable, meaning, value of elements of a list can be altered.

>>> a = [1,2,3]

>>> a[2]=4

>>> a

[1, 2, 4]

The values stored in a list can be accessed using the slice operator ([] and [:]) with indexes

starting at 0 in the beginning of the list and working their way to end -1. The plus (+) sign is

the list concatenation operator, and the asterisk (*) is the repetition operator. For example −

Example:

list = ['abcd', 786 , 2.23, 'john', 70.2]

tinylist = [123, 'john']

print list # Prints complete list

print list[0] # Prints first element of the list

print list[1:3] # Prints elements starting from 2nd till 3rd

print list[2:] # Prints elements starting from 3rd element

print tinylist * 2 # Prints list two times

print list + tinylist # Prints concatenated lists

36

Output:

['abcd', 786, 2.23, 'john', 70.2]

abcd

[786, 2.23]

[2.23, 'john', 70.2]

[123, 'john', 123, 'john']

['abcd', 786, 2.23, 'john', 70.2, 123, 'john']

Loop Through a List

Example:

thislist = ["apple", "banana", "cherry"]

for x in thislist:

print(x)

Output:

apple

banana

cherry

Delete List Elements

Example:

list1 = ['physics', 'chemistry', 1997, 2000];

print list1

del list1[2];

print "After deleting value at index 2 : "

print list1

Output:

['physics', 'chemistry', 1997, 2000]

After deleting value at index 2 :

['physics', 'chemistry', 2000]

37

Check if Item Exists

Example:

thislist = ["apple", "banana", "cherry"]

if "apple" in thislist:

print("Yes, 'apple' is in the fruits list")

Output:

Yes, 'apple' is in the fruits list

Add Items

To add an item to the end of the list, use the append() method:

Example:

thislist = ["apple", "banana", "cherry"]

thislist.append("orange")

print(thislist)

Output:

['apple', 'banana', 'cherry', 'orange']

To add an item at the specified index, use the insert() method:

Example:

thislist = ["apple", "banana", "cherry"]

thislist.insert(1, "orange")

print(thislist)

Output:

['apple','orange','banana', 'cherry']

List Length

Example:

thislist = ["apple", "banana", "cherry"]

print(len(thislist))

Output:

3

Remove Item

Example:

thislist = ["apple", "banana", "cherry"]

thislist.remove("banana")

print(thislist)

38

Output:

['apple', 'cherry']

The pop() method removes the specified index, (or the last item if index is not specified):

Example:

thislist = ["apple", "banana", "cherry"]

thislist.pop()

print(thislist)

Output:

['apple', 'banana']

The del keyword removes the specified index:

Example:

thislist = ["apple", "banana", "cherry"]

delthislist[0]

print(thislist)

Output:

['banana', 'cherry']

The del keyword can also delete the list completely:

Example:

thislist = ["apple", "banana", "cherry"]

del thislist

print(thislist) #this will cause an error because "thislist" no longer exists.

Output:

Traceback (most recent call last):

File "demo_list_del2.py", line 3, in <module>

print(thislist) #this will cause an error because "thislist" no longer exists.

NameError: name 'thislist' is not defined

The clear () method empties the list:

Example:

thislist = ["apple", "banana", "cherry"]

thislist.clear()

39

print(thislist)

Output:

[]

The list() Constructor

Using the list() constructor to make a List.

Example:

thislist = list(("apple", "banana", "cherry")) # note the double round-brackets

print(thislist)

Output:

['apple', 'banana', 'cherry']

Built-in List Functions

Python includes the following list functions −

Sr.No. Function with Description

1 cmp(list1, list2)

Compares elements of both lists.

2 len(list)

Gives the total length of the list.

3 max(list)

Returns item from the list with max value.

4 min(list)

Returns item from the list with min value.

5 list(seq)

Converts a tuple into list.

List Methods

40

Python has a set of built-in methods that you can use on lists.

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

 PythonTuples

Tupleis an ordered sequences of items same as list.

The only difference is that tuples are immutable. Tuples once created cannot be modified.

Tuples are used to write-protect data and are usually faster than list as it cannot change

dynamically.

It is defined within parentheses () where items are separated by commas.

Example:

>>> t = (5,'program', 1+3j)

We can use the slicing operator [] to extract items but we cannot change its value.

The main differences between lists and tuples are: Lists are enclosed in brackets ([]) and

their elements and size can be changed, while tuples are enclosed in parentheses (()) and

cannot be updated. Tuples can be thought of as read-only lists. For example –

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

tinytuple = (123, 'john')

printtuple # Prints completelist

41

print tuple[0] # Prints first element of the list

print tuple[1:3] # Prints elements starting from 2nd till 3rd

print tuple[2:] # Prints elements starting from 3rd element

print tinytuple * 2 # Prints list two times

print tuple + tinytuple # Prints concatenated lists

Output:

('abcd', 786, 2.23, 'john', 70.2)

abcd

(786, 2.23)

(2.23, 'john', 70.2)

(123, 'john', 123, 'john')

('abcd', 786, 2.23, 'john', 70.2, 123, 'john')

Loop Through a Tuple

Example:

thistuple = ("apple", "banana", "cherry")

for x in thistuple:

print(x)

Output:

apple

banana

cherry

Check if Item Exists

Example:

thistuple = ("apple", "banana", "cherry")

if "apple" in thistuple:

print("Yes, 'apple' is in the fruits tuple")

Output:

Yes, 'apple' is in the fruits tuple

Tuple Length

Example:

42

thistuple = ("apple", "banana", "cherry")

print(len(thistuple))

Output:

3

The tuple() Constructor

Example:

thistuple = tuple(("apple", "banana", "cherry")) # note the double round-brackets

print(thistuple)

Output:

('apple', 'banana', 'cherry')

Utility of Tuples

Example:

quo, rem = divmod(100,3)

print("Quotient = ",quo)

print("Rem = ",rem)

Output:

Quotient = 33

Rem = 1

Zip Function

Zip() is a function that takestwo or more sequences and ―zips‖ them into a list of tuples.

Example:

Tup= (1,2,3,4,5)

List1=['a','b','c','d','e']

print(list((zip(Tup, List1))))

Output:

[(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd'), (5, 'e')]

43

Tuple Methods

Method Description

count() Returns the number of times a specified value occurs in a tuple

index() Searches the tuple for a specified value and returns the position of where it

was found

 PythonSet

A set is a collection which is unordered and unindexed. In Python sets are written with curly

brackets.

Sets are unordered, so the items will appear in a random order and is separated by comma

inside braces { }.

Example:

a ={5,2,3,1,4}

printing set variable

print("a = ", a)

data type of variable a

print(type(a))

Output:

a = {1, 2, 3, 4, 5}

<class 'set'>

We can perform set operations like union, intersection on two sets. Set have unique values.

They eliminate duplicates.

Example:

>>> a = {1,2,2,3,3,3}

>>> a

{1, 2, 3}

44

AccessItems

You cannot access items in a set by referring to an index, since sets are unordered the items

has no index.

Example:

thisset = {"apple", "banana", "cherry"}

for x in thisset:

print(x)

Output:

apple

banana

cherry

Check if "banana" is present in the set:

Example:

thisset = {"apple", "banana", "cherry"}

print("banana" in thisset)

Output:

True

Since, set are unordered collection, indexing has no meaning. Hence the slicing operator []

does not work.

Example:

>>> a = {1,2,3}

>>> a[1]

Traceback (most recent call last):

File "<string>", line 301, in runcode

File "<interactive input>", line 1, in <module>

TypeError: 'set' object does not support indexing

Add Items

To add one item to a set use the add() method.

Example:

45

thisset = {"apple", "banana", "cherry"}

thisset.add("orange")

print(thisset)

Output:

{'cherry', 'banana', 'apple', 'orange'}

To add more than one item to a set use the update() method.

Example:

thisset = {"apple", "banana", "cherry"}

thisset.update(["orange", "mango", "grapes"])

print(thisset)

Output:

{'apple', 'banana', 'mango', 'cherry', 'grapes', 'orange'}

Get the Length of a Set

To determine how many items a set has, use the len() method.

Example:

thisset = {"apple", "banana", "cherry"}

print(len(thisset))

Output:

3

Remove Item

To remove an item in a set, use the remove(), or the discard() method.

Example:

thisset = {"apple", "banana", "cherry"}

thisset.remove("banana")

print(thisset)

Output:

{'cherry', 'apple'}

Note: If the item to remove does not exist, remove() will raise an error.

Example:

46

thisset = {"apple", "banana", "cherry"}

thisset.discard("banana")

print(thisset)

Output:

{'apple', 'cherry'}

Note: If the item to remove does not exist, discard() will NOT raise an error.

You can also use the pop(), method to remove an item, but this method will remove the last

item. Remember that sets are unordered, so you will not know what item that gets removed.

Example:

thisset = {"apple", "banana", "cherry"}

x = thisset.pop()

print(x)

print(thisset)

Output:

{'cherry', 'apple'}

Note: Sets are unordered, so when using the pop() method, you will not know which item

that getsremoved.

The clear() method empties the set:

Example:

thisset = {"apple", "banana", "cherry"}

thisset.clear()

print(thisset)

Output:

set()

The del keyword will delete the set completely:

Example:

thisset = {"apple", "banana", "cherry"}

del thisset

print(thisset)

47

Output:

Traceback (most recent call last):

File "demo_set_del.py", line 5, in <module>

print(thisset) #this will raise an error because the set no longer exists

NameError: name 'thisset' is not defined

The set() Constructor

Example:

thisset = set(("apple", "banana", "cherry")) # note the double round-brackets

print(thisset)

Output:

{'cherry', 'banana', 'apple'}

Set Methods

Method Description

add() Adds an element to the set

clear() Removes all the elements from the set

copy() Returns a copy of the set

difference() Returns a set containing the difference between two or more sets

difference_update() Removes the items in this set that are also included in another,

specified set

discard() Remove the specified item

intersection() Returns a set, that is the intersection of two other sets

intersection_update() Removes the items in this set that are not present in other,

specified set(s)

isdisjoint() Returns whether two sets have a intersection or not

issubset() Returns whether another set contains this set or not

issuperset() Returns whether this set contains another set or not

pop() Removes an element from the set

remove() Removes the specified element

symmetric_difference() Returns a set with the symmetric differences of two sets

symmetric_difference_update() inserts the symmetric differences from this set and another

union() Return a set containing the union of sets

update() Update the set with the union of this set and others

48

Python Set union()

The union of two or more sets is the set of all distinct elements present in all the sets.

In Python, union() allows arbitrary number of arguments.

Syntax:

A.union(other_sets)

The union() method returns the union of set A with all the sets (passed as an argument).

If argument is not passed to union(), it returns a shallow copy the set.

Example:

A = {'a', 'c', 'd'}

B = {'c', 'd', 2 }

C= {1, 2, 3}

print('A U B =',A.union(B))

print('B U C =',B.union(C))

print('A U B U C =', A.union(B, C))

print('A.union() = ', A.union())

Output:

A U B = {2, 'a', 'd', 'c'}

B U C = {1, 2, 3, 'd', 'c'}

A U B U C = {1, 2, 3, 'a', 'd', 'c'}

A.union() = {'a', 'd', 'c'}

You can also find the union of sets using | operator.

Example:

A = {'a', 'c', 'd'}

B = {'c', 'd', 2 }

C= {1, 2, 3}

print('A U B =', A| B)

print('B U C =', B | C)

print('A U B U C =', A | B | C)

Output:

A U B = {2, 'a', 'c', 'd'}

B U C = {1, 2, 3, 'c', 'd'}

A U B U C = {1, 2, 3, 'a', 'c', 'd'}

49

Python Set Difference()

The difference() method returns the set difference of two sets.

Syntax:

A.difference(B)

Here, A and B are two sets. The following syntax is equivalent to A-B.

Example:

A = {'a', 'b', 'c', 'd'}

B = {'c', 'f', 'g'}

print(A.difference(B))

print(B.difference(A))

Output:{'b', 'a', 'd'}

{'g', 'f'}

You can also find the set difference using - operator in Python.

Example:

A = {'a', 'b', 'c', 'd'}

B = {'c', 'f', 'g'}

print(A-B)

print(B-A)

50

Python Set intersection()

The intersection() method returns a new set with elements that are common to all sets.

Syntax:

Example:

A.intersection(other sets)

A = {2, 3, 5,4}

B = {2, 5,100}

C = {2, 3, 8, 9, 10}

print(B.intersection(A))

print(B.intersection(C))

print(A.intersection(C))

print(C.intersection(A, B))

Output:

{2, 5}

{2}

{2, 3}

{2}

You can also find the intersection of sets using &operator.

Example:

A = {100, 7,8}

51

B = {200, 4,5}

C = {300, 2, 3, 7}

D = {100, 200, 300}

print(A & C)

print(A & D)

print(A & C & D)

print(A & B & C & D)

Output:

{7}

{100}

set()

set()

Python Set symmetric_difference()

The symmetric_difference() returns a new set which is the symmetric difference of two sets.

Syntax: A.symmetric_difference(B)

Example:

A = {'a', 'b', 'c', 'd'}

B = {'c', 'd', 'e' }

C = {}

print(A.symmetric_difference(B))

print(B.symmetric_difference(A))

print(A.symmetric_difference(C))

print(B.symmetric_difference(C))

Output:

{'b', 'a','e'}

{'b', 'e','a'}

52

{'b', 'd', 'c', 'a'}

{'d', 'e', 'c'}

In Python, you can also find the symmetric difference using ^ operator.

A = {'a', 'b', 'c', 'd'}

B = {'c', 'd', 'e' }

print(A ^ B)

print(B ^A)

print(A ^ A)

print(B ^B)

Output:

{'e', 'a','b'}

{'e', 'a','b'}

set()

set()

 PythonDictionary

A dictionary is a collection which is unordered, changeable and indexed.

Dictionary is an unordered collection of key-value pairs.

In Python, dictionaries are defined within braces {} with each item being a pair in the form

key:value. Key and value can be of any type.

Example:

thisdict = {

"brand": "Ford",

"model": "Mustang",

"year":1964

}

print(thisdict)

53

Output:

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964}

Accessing Items

Example:

thisdict = {

"brand":"Ford",

"model": "Mustang",

"year": 1964

}

x = thisdict["model"]

print(x)

Output:

Mustang

There is also a method called get() that will give you the same result:

Example:

x = thisdict.get("model")

Change Values

Example:

thisdict = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

thisdict["year"] = 2018

Output:

{'brand': 'Ford', 'model': 'Mustang', 'year': 2018}

Loop Through a Dictionary

Example:

for x in thisdict:

54

print(x)

Output: brand

model

year

Print all values in the dictionary, one by one.

Example:

for x in thisdict:

print(thisdict[x])

Output:

Ford

Mustang

1964

You can also use the values () function to return values of a dictionary:

Example:

for x in thisdict.values():

print(x)

Output: Ford

Mustang

1964

Loop through both keys and values, by using the items() function:

Example:

for x, y in thisdict.items():

print(x, y)

Output:

brand Ford

model Mustang

year 1964

Check if Key Exists

Example:

55

thisdict = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

if "model" in thisdict:

print("Yes, 'model' is one of the keys in the thisdict dictionary")

Output:

Yes, 'model' is one of the keys in the thisdict dictionary

Dictionary Length

To determine how many items (key-value pairs) a dictionary has, use the len() method.

Example:

print(len(thisdict))

Adding Items

Example:

thisdict = {

"brand": "Ford",

"model": "Mustang",

"year":1964

}

thisdict["color"] = "red"

print(thisdict)

Output:

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964, 'color': 'red'}

Removing Items

The pop() method removes the item with the specified key name:

Example:

56

thisdict = {

"brand": "Ford",

"model": "Mustang",

"year":1964

}

thisdict.pop("model")

print(thisdict)

Output:

{'brand': 'Ford', 'year': 1964}

The popitem() method removes the last inserted item (in versions before 3.7, a random item

is removed instead):

Example:

thisdict = {

"brand": "Ford",

"model": "Mustang",

"year":1964

}

thisdict.popitem()

print(thisdict)

Output:

{'brand': 'Ford', 'model': 'Mustang'}

The del keyword removes the item with the specified key name:

Example:

thisdict = {

"brand": "Ford",

"model": "Mustang",

"year":1964

}

del thisdict["model"]

print(thisdict)

Output:

{'brand': 'Ford', 'year': 1964}

57

The del keyword can also delete the dictionary completely:

Example:

thisdict = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

del thisdict

print(thisdict) #this will cause an error because "thisdict" no longer exists.

Output:

Traceback (most recent call last):

File "demo_dictionary_del3.py", line 7, in <module>

print(thisdict) #this will cause an error because "thisdict" no longer exists.

NameError: name 'thisdict' is not defined

The clear() keyword empties the dictionary:

Example:

thisdict = {

"brand": "Ford",

"model": "Mustang",

"year":1964

}

thisdict.clear()

print(thisdict)

Output:

{}

The dict() Constructor

Example:

thisdict = dict(brand="Ford", model="Mustang", year=1964)

note that keywords are not string literals

note the use of equals rather than colon for the assignment

print(thisdict)

58

Output:

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964}

Dictionary Methods

Method Description

clear() Removes all the elements from the dictionary

copy() Returns a copy of the dictionary

fromkeys() Returns a dictionary with the specified keys and values

get() Returns the value of the specified key

items() Returns a list containing the a tuple for each key value pair

keys() Returns a list containing the dictionary's keys

pop() Removes the element with the specified key

popitem() Removes the last inserted key-value pair

setdefault() Returns the value of the specified key. If the key does not exist: insert the key, with

the specified value

update() Updates the dictionary with the specified key-value pairs

values() Returns a list of all the values in the dictionary

PYTHON OPERATORS AND EXPRESSIONS

Operators are the constructs which can manipulate the value of operands.

In an expression, an operator is used on operand(s) (values to be manipulated).

Python divides the operators in the following groups:

 Arithmeticoperators

 Assignmentoperators

 Comparisonoperators

 Logicaloperators

 Identityoperators

 Membershipoperators

 Bitwiseoperators

 UnaryOperators

59

 Python ArithmeticOperators

Arithmetic operators are used with numeric values to perform common mathematical

operations:

Operator Name Example

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Division x / y

% Modulus x % y

** Exponentiation x ** y

// Floor division x // y

Division operator: Divides left hand operand by right hand operand

Floor Divison: The division of operands where the result is the quotient in which the digits

after the decimal point are removed. But if one of the operands is negative, the result is

floored, i.e., rounded away from zero (towards negative infinity).

Example:

>>> 20/10

2.0

>>> 20//10

2

 Python Assignment Operators (In-place or ShortcutOperators)

Assignment operators are used to assign values to variables:

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

//= x //= 3 x = x // 3

60

**= x **= 3 x = x ** 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

>>> str1="Good"

>>> str2=" Morning"

>>>str1+=str2

>>> print(str1)

GoodMorning

 Python Comparison Operators (RelationalOperators)

Comparison operators are used to compare two values:

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

 Python Logical Operators

Logical operators are used to combine conditional statements:

Operator Description Example

and Returns True if both statements are true x < 5 and x < 10

or Returns True if one of the statements is true x < 5 or x < 4

not Reverse the result, returns False if the result

is true

not(x < 5 and x <

10)

Example:

x = 5

61

print(x > 3 and x <10)

Output:

True

 Python IdentityOperators

Identity operators are used to compare the objects, not if they are equal, but if they are

actually the same object, with the same memory location:

Operator Description Example

is Returns true if operands or values on both sides of the

operator point to the same object and False otherwise

x is y

is not Returns true if operands or values on both sides of the

operator does not point to the same object and False

otherwise

x is not y

Example:

x = ["apple", "banana"]

y = ["apple", "banana"]

z = x

print(x is z)

print(x is y)

print(x == y)

Output:

True

False

True

Example:

x = ["apple", "banana"]

y = ["apple", "banana"]

z = x

62

print(x is not z)

print(x is not y)

print(x <> y)

Output: False

True

False

 Python MembershipOperators

Membership operators are used to test if a sequence is presented in an object:

Operator Description Example

in Returns True if a sequence with the specified value is

present in the object

x in y

not in Returns True if a sequence with the specified value is

not present in the object

x not in y

Example:

x = ["apple", "banana"]

print("banana" in x)

Output:

True

Example:

x = ["apple", "banana"]

print("pineapple" not in x)

Output:

True

 Python BitwiseOperators

Bitwise operators are used to compare (binary) numbers:

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<< Zero fill left Shift left by pushing zeros in from the right and let the leftmost bits

63

shift fall off

>> Signed right

shift

Shift right by pushing copies of the leftmost bit in from the left, and

let the rightmost bits fall off

 Python Unary Operators

Unary Operators act on single operands.

Example:

>>> b=10

>>> a=-(b)

>>> print(a)

-10

Python Operators Precedence and Associativity

Sr.No. Operator & Description

1 ** Exponentiation (raise to the power)

2 ~+- Complement, unary plus and minus (method

names for the last two are +@ and -@)

3 * / % // Multiply, divide, modulo and floor division

4 + - Addition and subtraction

5 >><< Right and left bitwise shift

6 & Bitwise 'AND'

7 ^ | Bitwise exclusive `OR' and regular `OR'

8 <= <>>= Comparison operators

9 <> == != Equality operators

10 = %= /= //= -= += *= **= Assignment operators

11 is is not Identity operators

12 in not in Membership operators

13 not or and Logical operators

64

Data Type Conversion

Sr.No. Function & Description

1 int(x [,base])

Converts x to an integer. base specifies the base if x is a string.

2 long(x [,base])

Converts x to a long integer. base specifies the base if x is a string.

3 float(x)

Converts x to a floating-point number.

4 complex(real [,imag])

Creates a complex number.

5 str(x)

Converts object x to a string representation.

6 repr(x)

Converts object x to an expression string.

7 eval(str)

Evaluates a string and returns an object.

8 tuple(s)

Converts s to a tuple.

9 list(s)

Converts s to a list.

10 set(s)

Converts s to a set.

11 dict(d)

Creates a dictionary. d must be a sequence of (key,value) tuples.

12 frozenset(s)

65

 Converts s to a frozen set.

13 chr(x)

Converts an integer to a character.

14 unichr(x)

Converts an integer to a Unicode character.

15 ord(x)

Converts a single character to its integer value.

16 hex(x)

Converts an integer to a hexadecimal string.

17 oct(x)

Converts an integer to an octal string.

Example:

>>> float(5)

5.0

>>> int(10.6)

10

>>> int(-10.6)

-10

>>> float('2.5')

2.5

>>>str(25)

'25'

>>> int('1p')

Traceback (most recent call last):

File "<string>", line 301, in runcode

File "<interactive input>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '1p'

>>>set([1,2,3])

{1, 2, 3}

>>> tuple({5,6,7})

(5, 6,7)

>>>list('hello')

['h', 'e', 'l', 'l', 'o']

>>> dict([[1,2],[3,4]])

66

{1: 2, 3: 4}

>>> dict([(3,26),(4,44)])

{3: 26, 4: 44}

CONTROL FLOW STATEMENTS

Control statement is a statement that determines the control flow of asset of in striations. There are three

fundamental methods of control flow in a programming language are:

 Sequential

 Selection

 Iterative Control

 SELECTION/CONDITIONAL BRANCHING STATEMENTS/ DECISION MAKING

STATEMENTS

o Decision making is anticipation of conditions occurring while execution of the

program and specifying actions taken according to theconditions.

o Decision structures evaluate multiple expressions which produce TRUE or FALSE as

outcome. You need to determine which action to take and which statements to

execute if outcome is TRUE or FALSEotherwise.

 If Statement

Anifstatementisaselectioncontrolstatementbasedonthevalueofagivenexpression. Syntax:

if text expression:

Statement 1

......

Statement n

67

Statement x

Example:

a = 33

b =200

if b >a:

print("b is greater than a")

Output:

b is greater than a

 if-else Statement

IfandelsestatementsareusedtodeterminewhichoptioninaseriesofpossibilitiesisTrue. Syntax:

if text_expression:

Statement block 1

else:

Statement x Example:

a = 200

b = 33

ifb>a:

tatement block 2

68

Output:

print("b is greater than a")

else:

print("b is not greater than a")

b is not greater than a

 Nested ifStatements

If statements can be nested resulting in multi-way selection

Example:

num=int(input("Enter any number"))

if(num>=0 and num<10):

print("Range 0-10")

if(num>=10 and num<20):

print("Range 10-20")

if(num>=20 and num<30):

print("Range 20-30")

Output:

Range 20-30

 if-elif-elseStatement

Theelifstatementisashortcuttoifandelsestatements.Aseriesofifandelifstatementshaveafinal

block,whichisexecutedifnoneoftheiforelifexpressionsisTrue.

The elif and else parts are optional.

Example:

a =33

b =33

if b > a:

print("b is greater than a")

elif a == b:

print("a and b are equal")

Output:

a and b are equal

Example:

a = 200

b = 33

69

if b > a:

print("b is greater than a")

elif a == b:

print("a and b are equal")

else:

print("a is greater than b")

Output:

a is greater than b

 Short HandIf

Example:

a = 200

b = 33

70

if a > b: print("a is greater than b")

Output:

a is greater than b

 Short Hand If ... Else

Example:

print("A") if a > b else print("B")

Output:

B

Example:

a =330

b =330

print("A") if a > b else print("=") if a == b else print("B")

Output:

=

 ITERATIVE CONTROL/BASIC LOOPSTRUCTURES

Python supports basic loop structures through iterative statements. Iterative statements are decision

control statements that are used to repeat the execution of a list of statements.

Python language supports two types of iterative statements:

 whileloop

 forloop

 whileloop

A while loop statement in Python programming language repeatedly executes a target

statement as long as a given condition is true.

Repeats a statement or group of statements while a given condition is TRUE. It tests the

condition before executing the loop body.

Syntax

71

while expression:

statement(s)

while Loop Construct

Example: Program to print first 10 numbers using a while loop

i=1

while(i<=10):

print("num= ",i)

i=i+1

Output:

num= 1

num= 2

num= 3

num= 4

num= 5

num= 6

num= 7

num= 8

num= 9

num= 10

end specifies the values which have to be printed after the print statement has been executed.

Example:

72

Output: i=1

while(i<=10):

print(i, end="")

i=i+1

1 2 3 4 5 6 7 8 9 10

If you want to separate the two values printed on the same line using a tab.

i=1

while(i<=10):

print(i, end="\t")

i=i+1

Output:

1 2 3 4 5 6 7 8 9 10

Note: If you use end = “”, then there will be no space between two values. There is no difference

in the way you write the end statement as end = „‟ or end = “”.

Program to print the 10 horizontal asterisks (*)

i=1

while(i<=10):

print("*", end="")

i=i+1

Output: *********

Program to calculate the sum and average of first 10 numbers.

i=0

s=0

while(i<=10):

s=s+i

73

Output:

i=i+1

avg=float(s)/10

print("The sum of first 10 numers is: ", s)

print("The average of first 10 numbers is: ", avg)

The sum of first 10 numers is: 55

The average of first 10 numbers is: 5.5

Program to calculate the sum of numbers from ton

m=int(input("Enter the value of m= "))

n=int(input("Ente rthe value of n="))

s=0

while(m<=n):

s=s+m

m=m+1

print("Sum: ",s)

Output:

Enterthevalueofm=7

Enterthevalueofn=12

Sum:57

Program to find whether the given number is an Armstrong number or not.

n=int(input("Enter the number= "))

s=0

num = n

while(n>0):

r=n%10

s=s+(r**3)

n=n//10

if(s==num):

print("The number is armstrong")

Output:

else:

74

 p rint("The number is not armstrong")

Enter the number= 371

The number is Armstrong

Program to display the binary equivalent of decimal number

de=int(input("Enter the number= "))

bi=0

i=0

while(de!=0):

r=de%2

bi=bi+r*(10**i)

de=de//2

i=i+1

print("The binary equivalent = ", bi)

Output: Enter the number= 7

The binary equivalent = 111

75

Program to convert decimal equivalent of binary number

bi=int(input("Enter the number= "))

de=0

i=0

while(bi!=0):

r=bi%10

de=de+r*(2**i)

bi=bi//10

i=i+1

print("The decimal equivalent = ", de)

Output: Enter the number= 1101

The decimal equivalent = 13

Program to enter a number and then calculate the sum of digits

n=int(input("Enter the number= "))

s=0

while(n!=0):

temp=n%10

s=s+temp

n=n//10

print("The sum of digitsis:",s)

Output: Enter the number=123

The sum of digits is:6

Program to calculate the GCD of two numbers

m=int(input("Enter the first number= "))

n=int(input("Enter the second number= "))

if(m>n):

div = m

dis = n

else:

div = n

dis = m

while(dis!=0):

76

r =div%dis

div = dis

dis =r

print("GCD: ", div)

Output: Enter the first number= 64

Enter the second number= 14

GCD: 2

Program to print the series in reverse order

n=int(input("Enter the first number= "))

while(n>=0):

print(n, end=' ')

n=n-1

Output:

Enter the first number= 10

10 9 8 7 6 5 4 3 2 1 0

Program to print the reverse of number.

n=int(input("Enter the first number= "))

print("The reversed number is ",)

while(n!=0):

temp = n%10

print(temp, end=" ")

n = n//10

Output:

Enter the first number= 123

The reversed number is

3 2 1

The Break Statement

With the break statement we can stop the loop even if the while condition is true:

Example:

i = 1

while i <6:

77

print(i)

if (i ==3):

break

i += 1

Output:

1

2

3

The continue Statement

With the continue statement we can stop the current iteration, and continue with the next:

Example:

i = 0

while i < 6:

i += 1

if i == 3:

continue

print(i)

Output:

1

2

4

5

6

Using else Statement with Loops

Python supports to have an else statement associated with a loop statement.

 If the else statement is used with a for loop, the else statement is executed when the

loop has exhausted iterating thelist.

 If the else statement is used with a while loop, the else statement is executed when

the condition becomesfalse.

78

Example:

count = 0

while count < 5:

print (count, " is less than 5")

count = count + 1

else:

print (count, " is not less than 5")

Output:

0 is less than5

1 is less than5

2 is less than5

3 is less than5

4 is less than5

5 isnotlessthan5

 forLoop

Executes a sequence of statements multiple times and abbreviates the code that manages the

loop variable.

Syntax:

for iterating_var in sequence:

statements(s)

for Loop construct

79

Print each fruit in a fruit list

fruits = ["apple", "banana", "cherry"]

for x in fruits:

print(x)

Output:

apple

banana

cherry

Looping Through a String

for x in "banana":

print(x)

Output:

b

a

n

a

n

a

The break Statement

With the break statement we can stop the loop before it has looped through all the items:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

print(x)

if x == "banana":

break

Output:

apple

banana

The continue Statement

With the continue statement we can stop the current iteration of the loop, and continue with

the next:

80

fruits = ["apple", "banana", "cherry"]

for x in fruits:

if x == "banana":

continue

print(x)

Output:

apple

cherry

The range() Function

To loop through a set of code a specified number of times, we can use the range() function,

The range() function returns a sequence of numbers, starting from 0 by default, and

increments by 1 (by default), and ends at a specified number.

for x in range(6):

print(x)

Output:

0

1

2

3

4

5

Note that range(6) is not the values of 0 to 6, but the values 0 to 5.

The range() function defaults to 0 as a starting value, however it is possible to specify the

starting value by adding a parameter: range(2, 6), which means values from 2 to 6 (but not

including 6):

for x in range(2, 6):

print(x)

Output:

2

3

4

5

The range() function defaults to increment the sequence by 1, however it is possible to

81

specify the increment value by adding a third parameter: range(2,30,3):

for x in range(2, 30, 3):

print(x)

Output:2

5

8

11

14

17

20

23

26

29

Else in For Loop

The else keyword in a for loop specifies a block of code to be executed when the loop is

finished:

for x in range(6):

print(x)

else:

print("Finally finished!")

Output:

0

1

2

3

4

5

Finally finished!

Nested Loops

adj = ["red", "big", "tasty"]

fruits = ["apple", "banana", "cherry"]

for x in adj:

for y in fruits:

82

print(x, y)

Output:red apple

red banana

red cherry

big apple

big banana

big cherry

tasty apple

tasty banana

tastycherry

pass Statement

It is used when a statement is required syntactically but you do not want any command or

code to execute.

The pass statement is a null operation; nothing happens when it executes. The pass is also

useful in places where your code will eventually go, but has not been written yet (e.g., in

stubs for example) −

for letter in 'Python':

if letter == 'h':

pass

print ('This is pass block')

print ('Current Letter :', letter)

print ("Good bye!")

Output:

Current Letter : P

Current Letter : y

Current Letter : t

This is pass block

Current Letter : h

Current Letter : o

Current Letter : n

Good bye!

83

Program to calculate the average of first n natural numbers

n = int(input("Enter the value of n= "))

a=0.0

s=0

for i in range(1, n+1):

s=s+i

a=s/i

print("Sum =",s)

print("Average= ",a)

Output:

Enter the value of n= 10

Sum = 55

Average=5.5

Program to calculate the sum of series :- 1+1/2+1/3+ … +1/n.

n = int(input("Enter the value of n= "))

s=0.0

for i in range(1, n+1):

a=1.0/i

s=s+a

print("sum",s)

Output:

Enter the value of n= 5

sum 2.283333333333333

Program to calculate the square root.

import math

n=121

x = math.sqrt(n)

print(x)

Output: 11.0

84

Program using for loop that prints the decimal equivalents of ½, 1/3, ¼, … 1/10.

for i in range (1,10):

print("1/", i,"=%f"% (1.0/i))

Output:1/ 1 =1.000000

1/ 2 =0.500000

1/ 3 =0.333333

1/ 4 =0.250000

1/ 5 =0.200000

1/ 6 =0.166667

1/ 7 =0.142857

1/ 8 =0.125000

1/ 9 =0.111111

Program to determine the character entered by the user.

char=input("Press any key= ")

if(char.isalpha()):

print("The user has entered a character")

if(char.isdigit()):

print("The user has entered a digit")

if(char.isspace()):

print("The user entered a while space character")

Output:

Press any key= 5

The user has entered a digit

Program to print the following pattern:

i)

12345

12345

12345

12345

12345

for i in range (1,6):

for j in range(1,6):

85

print(j , end="")

print()

ii)

for i in range (1,6):

for j in range(1,6):

print("*" , end="")

iii)

*

**

print()

for i in range (1,6):

for j in range(i):

print("*" , end="")

print()

iv)

1

12

123

1234

12345

for i in range (1,6):

for j in range(1,i+1):

print(j , end="")

v)

A

B C D E F

86

G H I J

K L M N O

P Q R S T U

print()

vi) A A B A B C

lastNumber = 6

asciiNumber = 65

for i in range(0, lastNumber): for j in

range(0, i+1):

character = chr(ascii Number)

print(character, end=' ') ascii

Number+=1

print(― ‖)

87

A B C D

A B C DE

for i in range(1, 6):

for j in range(65, 65+i):

a = chr(j)

print(a,end="")

print("")

PYTHON FUNCTIONS

 A function is a block of code which only runs when it iscalled.

 You can pass data, known as parameters, into afunction.

 A function can return data as a result.

 Using 'def' statement for defining a function is the corner store of a majority of

programs inPython.

 Functions also let programmers compute a result-value and give parameters that serve

as function inputs that may change each time the code runs. Functions prove to be a

useful tool when the operations are coded in it and can be used in a variety of

scenarios.

 Functions are an alternative method of cutting-and-pasting codes, rather than typing

redundant copies of the same instruction or operation; which further reduces the

future work for programmers. They are the most basic structure of a program, and so

Python provides this technique for codere-use.

 Python gives you many built-in functions like print(), etc. but you can also create your

own functions. These functions are called user-defined functions.

Defining a Function

Rules to define a function in Python:

Function blocks begin with the keyword def followed by the function name and

parentheses (()).

A function name to uniquely identify it. Function naming follows the same rules of

writing identifiers in Python.

Any input parameters or arguments should be placed within these parentheses. You

can also define parameters inside theseparentheses.

88

The first statement of a function can be an optional statement - the documentation

string of the function or docstring. Optional documentation string (docstring) to

describe what the functiondoes.

The code block within every function starts with a colon (:) and is indented. A colon (:)

to mark the end of functionheader.

The statement return [expression] exits a function, optionally passing back an

expression to the caller. A return statement with no arguments is the same as return

None. Statements must have same indentation level (usually 4 spaces).

Syntax

def function name(parameters

): "function_docstring"

function_suite

return [expression]

89

By default, parameters have a positional behaviour and you need to inform them in the same

order that they were defined.

Advantages of Python Functions

 Maximizing code reusability

 Minimizing redundancy

 Proceduraldecom position

 Make programs simpler to read and understand

Creating a Function

In Python a function is defined using the def keyword:

Example:

def my_function():

print("Hello from a function")

Calling a Function

To call a function, use the function name followed by parenthesis:

Example:

def my_function():

print("Hello from a function")

my_function()

Parameters

 Information can be passed to functions as parameter.

 Parameters are specified after the function name, inside the parentheses. You can add

as many parameters as you want, just separate them with acomma.

 The following example has a function with one parameter (fname). When the function

is called, we pass along a first name, which is used inside the function to print the full

name:

Example:

def my_function(fname):

print(fname + " Refsnes")

90

my_function("Emil")

my_function("Tobias")

my_function("Linus")

Output:

Example:

def greet(name):

"""This function greets to

the person passed in as

parameter"""

print("Hello, " + name + ". Good morning!")

Call a function:

>>>greet('Paul')

Hello, Paul. Good morning!

The return statement

 The return statement is used to exit a function and go back to the place from where it

was called.

Syntax of return

return [expression_list]

This statement can contain expression which gets evaluated and the value is returned. If there

is no expression in the statement or the return statement itself is not present inside a function,

then the function will return the None object.

Example:

>>> print(greet("May"))

Hello, May. Good morning!

None

91

Here, None is the returned value.

Example of return

def absolute_value(num):

"""This function returns the absolute

value of the entered number"""

if num >= 0:

return num

else:

return -num

Output: 2

print(absolute_value(2))

Output: 4

print(absolute_value(-4))

Output:

2

4

How Function works in Python?

Program for Fibonacci Series

def fibo(n):

a = 0

92

b = 1

for i in range(0, n):

temp = a

a =b

b = temp + b

returna

Show the first 13 Fibonacci numbers.

for c in range(0, 13):

print(fibo(c)) #Function call

Output:

0

1

1

2

3

5

8

13

21

34

55

89

144

It has to be kept in mind that every function without a return statement does return a value

which is called 'none'; which normally gets suppressed by the interpreter.

Python Program That Returns Multiple Values From Function

To return multiple values, we can use normal values or simply return a tuple

Example:

def karlos():

return 1, 2, 3

93

a, b, c = karlos()

print(a)

print (b)

print(c)

Output:

1

2

3

Scope and Lifetime of variables

 Scope of a variable is the portion of a program where the variable is recognized.

Parameters and variables defined inside a function is not visible from outside. Hence,

they have a localscope.

 Lifetime of a variable is the period throughout which the variable exits in the

memory. The lifetime of variables inside a function is as long as the function

executes.

 They are destroyed once we return from the function. Hence, a function does not

remember the value of a variable from its previouscalls.

Example:

def my_func():

x = 10

print("Value inside function:",x)

x = 20

my_func()

print("Value outside function:",x)

Output:

Value inside function: 10

Value outside function: 20

Note: In order to modify the value of variables outside the function, they must be declared as

global variables using the keyword global.

94

Types of Functions

 Python Built-inFunction

The Python interpreter has a number of functions that are always available for use. These

functions are called built-in functions. For example, print() function prints the given object to

the standard output device (screen) or to the text stream file.

In Python 3.6 (latest version), there are 68 built-in functions.

Method Description

Python abs() returns absolute value of a number

Python all() returns true when all elements in iterable is true

Python any() Checks if any Element of an Iterable is True

Python ascii() Returns String Containing Printable Representation

Python bin() converts integer to binary string

Python bool() Converts a Value to Boolean

Python bytearray() returns array of given byte size

Python bytes() returns immutable bytes object

Python callable() Checks if the Object is Callable

Python chr() Returns a Character (a string) from an Integer

Python classmethod() returns class method for given function

Python compile() Returns a Python code object

Python complex() Creates a Complex Number

Python delattr() Deletes Attribute From the Object

Python dict() Creates a Dictionary

Python dir() Tries to Return Attributes of Object

Python divmod() Returns a Tuple of Quotient and Remainder

Python enumerate() Returns an Enumerate Object

Python eval() Runs Python Code Within Program

95

Python exec() Executes Dynamically Created Program

Python filter() constructs iterator from elements which are true

Python float() returns floating point number from number, string

Python format() returns formatted representation of a value

Python frozenset() returns immutable frozenset object

Python getattr() returns value of named attribute of an object

Python globals() returns dictionary of current global symbol table

Python hasattr() returns whether object has named attribute

Python hash() returns hash value of an object

Python help() Invokes the built-in Help System

Python hex() Converts to Integer to Hexadecimal

Python id() Returns Identify of an Object

Python input() reads and returns a line of string

Python int() returns integer from a number or string

Python isinstance() Checks if a Object is an Instance of Class

Python issubclass() Checks if a Object is Subclass of a Class

Python iter() returns iterator for an object

Python len() Returns Length of an Object

Python list() Function creates list in Python

Python locals() Returns dictionary of a current local symbol table

Python map() Applies Function and Returns a List

Python max() returns largest element

Python memoryview() returns memory view of an argument

Python min() returns smallest element

Python next() Retrieves Next Element from Iterator

Python object() Creates a Featureless Object

Python oct() converts integer to octal

Python open() Returns a File object

Python ord() returns Unicode code point for Unicode character

Python pow() returns x to the power of y

Python print() Prints the Given Object

Python property() returns a property attribute

Python range() return sequence of integers between start and stop

96

Python repr() returns printable representation of an object

Python reversed() returns reversed iterator of a sequence

Python round() rounds a floating point number to ndigits places.

Python set() returns a Python set

Python setattr() sets value of an attribute of object

Python slice() creates a slice object specified by range()

Python sorted() returns sorted list from a given iterable

Python staticmethod() creates static method from a function

Python str() returns informal representation of an object

Python sum() Add items of an Iterable

Python super() Allow you to Refer Parent Class by super

Python tuple() Function Creates a Tuple

Python type() Returns Type of an Object

Python vars() Returnsdict attribute of aclass

Python zip() Returns an Iterator of Tuples

Python import () Advanced Function Called by import

 Python User-definedFunctions

Functions that we define ourselves to do certain specific task are referred as user-defined

functions.

Functions that readily come with Python are called built-in functions.

If we use functions written by others in the form of library, it can be termed as library

functions.

Advantages of user-defined functions

1. User-defined functions help to decompose a large program into small segments which

makes program easy to understand, maintain anddebug.

2. If repeated code occurs in a program. Function can be used to include those codes and

execute when needed by calling thatfunction.

3. Programmers working on large project can divide the workload by making different

functions.

Example:

Program to illustrate

97

the use of user-defined functions

def add_numbers(x,y):

sum = x + y

return sum

num1 = 5

num2 = 6

print("The sum is", add_numbers(num1, num2))

Output:

Enter a number: 2.4

Enter another number: 6.5

The sum is 8.9

Function Arguments

You can call a function by using the following types of formal arguments −

 Requiredarguments

 Keywordarguments

 Defaultarguments

 Variable-lengtharguments

 Requiredarguments

Required arguments are the arguments passed to a function in correct positional order. Here,

the number of arguments in the function call should match exactly with the function

definition.

To call the function printme(), you definitely need to pass one argument, otherwise it gives a

syntax error as follows:

Example:

def printme(str):

"This prints a passed string into this function"

print str

return;

98

Now you can call printme function

printme()

Output:

Traceback (most recent call last):

File "test.py", line 11, in <module>

printme();

TypeError: printme() takes exactly 1 argument (0 given)

 Keywordarguments

Keyword arguments are related to the function calls. When you use keyword arguments in a

function call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python interpreter

is able to use the keywords provided to match the values with parameters. You can also

make keyword calls to the printme() function in the following ways−

def printme(str):

"This prints a passed string into this function"

print str

return;

Now you can call printme function

printme(str = "My string")

Output:

My string

Example:

Function definition is here

def printinfo(name, age):

"This prints a passed info into this function"

print "Name: ", name

print "Age ", age

99

return;

Now you can call printinfo function

printinfo(age=50, name="miki")

Output:

Name: miki

Age50

 DefaultArgument

If we call the function without parameter, it uses the default value:

Example:

def my_function(country = "Norway"):

print("I am from " + country)

my_function("Sweden")

my_function("India")

my_function()

my_function("Brazil")

Output:

I am from Sweden

I am from India

I am from Norway

I am from Brazil

 Variable-lengtharguments

You may need to process a function for more arguments than you specified while defining

the function. These arguments are called variable-length arguments and are not named in the

function definition, unlike required and defaultarguments.

Syntax for a function with non-keyword variable arguments is this −

def functionname([formal_args,] *var_args_tuple):

"function_docstring"

function_suite

return [expression]

100

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword

variable arguments. This tuple remains empty if no additional arguments are specified during

the function call. Following is a simple example –

def printinfo(arg1, *vartuple):

"This prints a variable passed arguments"

print "Output is: "

print arg1

for var in vartuple:

print var

return;

Now you can call printinfo function

printinfo(10)

printinfo(70, 60, 50)

Output:

Output is:

10

Output is:

70

60

50

Program to demonstrate that the arguments may be passed in the form of expressions to

be called function.

def func(i):

print("hello world", i)

func(5+2*3)

Output: hello world 11

LAMBDA EXPRESSIONS (The Anonymous Functions or Unbound Functions)

A lambda function is a small anonymous function.

A lambda function can take any number of arguments, but can only have one expression.

101

Syntax:

lambda arguments : expression

The expression is executed and the result is returned.

These functions are called anonymous because they are not declared in the standard manner

by using the def keyword. You can use the lambda keyword to create small anonymous

functions.

 Lambda forms can take any number of arguments but return just one value in the

form of an expression. They cannot contain commands or multipleexpressions.

 An anonymous function cannot be a direct call to print because lambda requires an

expression

 Lambda functions have their own local namespace and cannot access variables other

than those in their parameter list and those in the globalnamespace.

 Although it appears that lambda's are a one-line version of a function, they are not

equivalent to inline statements in C or C++, whose purpose is by passing function

stack allocation during invocation for performancereasons.

 Lambda functions have noname

 Lambda functions can take any number ofarguments

 Lambda functions can return just one value in the form of anexpression

 Lambda functions definition does not have an explicit return statement but it always

contains which isreturned.

 They are a one line version of a function and hence cannot contain multiple

expressions.

 They cannot access variables other than those in their parameterlist.

 Lambda functions cannot even access global variables.

 You can pass lambda functions as arguments on otherfunctions.

A lambda function that adds 10 to the number passed in as an argument, and print the result:

Example:

x = lambda a : a + 10

print(x(5))

Output:

15

102

Lambda functions can take any number of arguments. A lambda function that multiplies

argument a with argument b and print the result:

Example:

x = lambda a, b : a * b

print(x(5, 6))

Output: 30

A lambda function that sums argument a, b, and c and print the result:

x = lambda a, b, c : a + b + c

print(x(5, 6, 2))

Output: 13

Why Use Lambda Functions?

The power of lambda is better shown when you use them as an anonymous function inside

another function.

Say you have a function definition that takes one argument, and that argument will be

multiplied with an unknown number:

def myfunc(n):

return lambda a : a * n

Use that function definition to make a function that always doubles the number you send in.

Example:

def myfunc(n):

return lambda a : a * n

mydoubler = myfunc(2)

print(mydoubler(11))

Output:

22

Or, use the same function definition to make a function that always triples the number you

send in:

Example:

def myfunc(n):

return lambda a : a * n

mytripler = myfunc(3)

103

print(mytripler(11))

Output:

33

Or, use the same function definition to make both functions, in the same program:

Example:

def myfunc(n):

return lambda a : a * n

mydoubler = myfunc(2)

mytripler = myfunc(3)

print(mydoubler(11))

print(mytripler(11))

Output:

22

33

NOTE:- Use lambda functions when an anonymous function is required for a short period of

time.

Program to find smaller of two numbers using lambda function

def small(a,b):

if(a<b):

return a

else:

return b

sum = lambda x, y: x+y

diff = lambda x, y : x-y

print("smaller of two numbers=", small(sum(-3, -2), diff(-1,2)))

Output:

smaller of two numbers= -5

104

Program to use a lambda function with an ordinary function

def inc(y):

return (lambda x: x+1)(y)

a=100

print("a= ", a)

print("a after incrementing= ")

b=inc(a)

print(b)

Output:

a=100

a after incrementing=

101

Program that passes lambda function as an argument to a function

def func(f,n):

print(f(n))

twice=lambda x: x*2

thrice=lambda x: x*3

func(twice,4)

func(thrice, 3)

Output:

8

9

Program that uses a lambda function to find the sum of first 10 natural numbers

x=lambda: sum(range(1,11))

print(x())

Output: 55

PYTHON RECURSIVE FUNCTIONS

A recursive function is defined as a function that calls itself to solve a smaller version of its

task until a final call is made which does not require a call to itself. Every recursive solution

has two major case:

105

Base case: in which the problem is simple enough to be solved directly without

making any further calls to the same function

Recursive case: in which first the problem at hand is divided into simpler sub-parts.

Second the function calls itself but with sub-parts of the problem obtained in the first step.

Third, the result is obtained by combining the solutions of simpler sub-parts.

Program to calculate the factorial of a number recursively

def factorial(n):

if (n == 1 or n==0):

return 1

else:

return n * factorial(n-1)

n=int(input("Enter a number = "))

print("The factorial of ", n , "is", factorial(n))

Output:

Enter a number = 5

The factorial of 5 is 120

Advantages of Recursion

1. Recursive functions make the code look clean and elegant.

2. A complex task can be broken down into simpler sub-problems usingrecursion.

3. Sequence generation is easier with recursion than using some nestediteration.

Disadvantages of Recursion

1. Sometimes the logic behind recursion is hard to followthrough.

2. Recursive calls are expensive (inefficient) as they take up a lot of memory andtime.

3. Recursive functions are hard to debug.

4.

Program to calculate the factorial of a number recursively

def GCD(x,y):

rem=x%y

if(rem==0):

return y

else:

106

return GCD(y,rem)

n=int(input("Enter the first number= "))

m =int(input("Enter the second number= "))

print("The GCD of numbers is = ", GCD(n, m))

Output:

Enter the first number= 50

Enter the second number= 5

The GCD of numbers is =5

107

Practice Questions

1. Write a program to determine whether a person is eligible or not forvoting.

2. Write a program to find the larger of twonumbers.

3. Write a program to find whether the given number is even ornot.

4. Write a program to find whether a given year is leap year ornot.

5. Write a program to determine whether a character entered by user is vowel or

not.

6. Write a program to find the greatest number from threenumbers.

7. Write a program that prompts the user to enter a number between 1-7 and then

displays the corresponding day of theweek.

8. Write a program to calculate the roots if a quadraticequation.

9. Write a program to read the numbers until -1 is encountered. Find the average

of positive numbers and negative numbers entered by theuser.

10. Write a program to enter any character. If the entered character is in lowercase

then convert it into uppercase and if it is an uppercase character, the convert it

into lowercaseletter.

11. Write a program to print the multiplication table of n, where n is entered by the

user.

12. Write a program using for loop to print all the numbers from m-n thereby

classifying them as even ornot.

13. Write a program using for loop to calculate the factorial of anumber.

14. Write a program to classify a given number as prime orcomposite.

15. Write a program using while loop to read the numbers until -1 is encountered.

Also, count the number of prime numbers and composite numbers entered by

theuser.

16. Write a program to calculate the power (x,n).

17. Write a program that displays all leap years from1900-2101.

18. Write a program to sum of the series – 1/12 + ½2 + …+1/n2.

19. Write a program to sum of the series½+2/3+…+n/(n+1).

20. Write a program to sum of the series: 1/1+22/2+33/3+…+nn/n.

21. Write a program to calculate the sum of cubes of numbers from1-n.

22. Write a program to sum of squares of evennumbers.

23. Write a program using for loop to calculate the value of an investment. Input an

108

initial value of investment and annual interest, and calculate the value of

investment over time.

24. Write a program to generate the calendar of a month given the start_day and the

number of days in thatmonth.

25. A company decides to give bonus to all its employees on Diwali. A 5% bonus on

salary is given to the male workers and 10% bonus on salary to the female

workers. Write a program to enter the salary of the employee and sex of the

employee. If the salary of the employee is less than Rs. 10,000 then the employee

gets an extra 2% bonus on salary. Calculate the bonus that has to be given to the

employee and display the salary that the employee willget.

26. Write a program that prompts users to enter numbers. The process will repeat

until users enters-1. Finally, the program prints the count of prime and

composite number sentered.

27. Write a program using functions to check whether two numbers are equal or

not.

28. Write a program using functions to swap the two numbers.

29. Write a program using functions and return statement to check whether a

number is even ornot.

30. Write a program using functions to convert the time intominutes.

31. Write a program using functions calculate the simple interest. Suppose the

customer is a senior citizen. He is being offered 12 % rate of interest; for all

other other customers, the ROI is10%.

32. Write a program to calculate the volume of a cuboid using default arguments.

33. Write a program to the sum of series: 1/1! + 4/2! +27/3!+…

34. Write a program to calculate exp(x, y) using recursive functions.

35. Write a program to print the Fibonacci series using recursion.

36. Write a program to print the following pattern.

a) b) c) d)

1 0 1 1

22 1 2 1 2 1 2 1

333 3 4 5 1 2 3 1 2 3 2 1

4444 6 7 8 9 1 2 3 4 1 2 3 4 3 2 1

55555

e)

f)

*

1 2 3 4 5 1 2 3 4 5 4 3 2 1

109

1 * *

2 2 * * *

3 3 3 * * * *

4 4 4 4 * * * * *

5 5 5 5 5

